
Cache-Oblivious Red-Blue

Line Segment Intersection

Lars Arge1,?, Thomas Mølhave1,??, and Norbert Zeh2,? ? ?

1 MADALGO†, Department of Computer Science, University of Aarhus, Denmark.
E-mail: {large,thomasm}@madalgo.au.dk

2 Faculty of Computer Science, Dalhousie University, Halifax, Nova Scotia, Canada.
E-mail: nzeh@cs.dal.ca

Abstract. We present an optimal cache-oblivious algorithm for finding
all intersections between a set of non-intersecting red segments and a
set of non-intersecting blue segments in the plane. Our algorithm uses
O(N

B
logM/B

N
B

+ T/B) memory transfers, where N is the total number
of segments, M and B are the memory and block transfer sizes of any
two consecutive levels of any multilevel memory hierarchy, and T is the
number of intersections.

1 Introduction

The memory systems of modern computers are becoming increasingly complex;
they consist of a hierarchy of several levels of cache, main memory, and disk. The
access times of different levels of memory often vary by orders of magnitude and,
to amortize the large access times of memory levels far away from the processor,
data is normally transferred between levels in large blocks. Thus, it is important
to design algorithms that are sensitive to the architecture of the memory system
and have a high degree of locality in their memory access patterns.

Building on the two-level external-memory model [1] introduced to model the
large difference between the access times of main memory and disk, the cache-

oblivious model [8] was introduced as a way of obtaining algorithms that are
efficient on all levels of arbitrary memory hierarchies. In this paper, we develop
a cache-oblivious algorithm for the red-blue line segment intersection problem,

? Supported in part by the US Army Research Office through grant W911NF-04-01-
0278, by an Ole Roemer Scholarship from the Danish National Science Research
Council, a NABIIT grant from the Danish Strategic Research Council, and by the
Danish National Research Foundation.

?? Supported in part by an Ole Roemer Scholarship from the Danish National Science
Research Council, a NABIIT grant from the Danish Strategic Research Council, and
by the Danish National Research Foundation.

? ? ? Supported by the Canada Research Chairs program, the Natural Sciences and Engi-
neering Research Council of Canada, and the Canadian Foundation for Innovation.

† Center for Massive Data Algorithmics, a Center of the Danish National Research
Foundation.

that is, for finding all intersections between a set of non-intersecting red segments
and a set of non-intersecting blue segments in the plane. Our algorithm is optimal
and, to the best of our knowledge, the first efficient cache-oblivious algorithm
for any intersection problem involving non-axis-parallel objects.

External-memory model. In the two-level external-memory model [1], the
memory hierarchy consists of an internal memory big enough to hold M ele-
ments and an arbitrarily large external memory partitioned into blocks of B
consecutive elements. A memory transfer moves one block between internal and
external memory. Computation can occur only on data in internal memory. The
complexity of an algorithm in this model (an external-memory algorithm) is mea-
sured in terms of the number of memory transfers it performs. Aggarwal and
Vitter proved that the number of memory transfers needed to sort N data items
in the external-memory model is Sort(N) = Θ(N

B logM/B
N
B) [1]. Subsequently,

a large number of algorithms have been developed in this model; see [2, 10] for
an overview. Below we briefly review results directly related to our work.

In the first paper to consider computational geometry problems in external
memory [9], Goodrich et al. introduced the distribution sweeping technique (a
combination of M/B-way distribution sort and plane sweeping) and showed
how it can be used to solve a large number of geometric problems in the plane
using O(Sort(N) + T/B) memory transfers, where T is the output size of the
problem (eg., number of intersections). The problems they considered include
the orthogonal line segment intersection problem and other problems involving
axis-parallel objects. Arge et al. developed an algorithm that solves the red-blue
line segment intersection problem using O(Sort(N)+T/B) memory transfers [4],
which is optimal. The algorithm uses the distribution sweeping technique [9] and
introduces the notion of multi-slabs; if the plane is divided into vertical slabs, a
multi-slab is defined as the union of any number of consecutive slabs. Multi-slabs
are used to efficiently deal with segments spanning a range of consecutive slabs.
The key is that, if there are only

√

M/B slabs, there are less than M/B multi-
slabs, which allows the distribution of segments into multi-slabs during a plane
sweep using standard M/B-way distribution. Arge et al. also extended their
algorithm to obtain a solution to the general line segment intersection problem
using O(Sort(N + T)) memory transfers [4].

Cache-oblivious model. In the cache-oblivious model [8], the idea is to design
a standard RAM-model algorithm that has not knowledge of the parameters of
the memory hierarchy but analyze it in the external-memory model assuming
that an offline optimal paging strategy performs the memory transfers necessary
to bring accessed elements into memory. Often it is also assumed that M ≥ B2

(the tall-cache assumption). The main advantage of the cache-oblivious model
is that it allows us to reason about a simple two-level memory model but prove
results about an unknown, multi-level memory hierarchy [8].

Frigo et al. [8] developed optimal cache-oblivious sorting algorithms, as well
as algorithms for a number of other fundamental problems. Subsequently, al-
gorithms and data structures for a range of problems have been developed [3].
Relevant to this paper, Bender et al. [5] developed a cache-oblivious algorithm

that solves the offline planar point location problem using O(Sort(N)) memory
transfers; Brodal and Fagerberg [6] developed a cache-oblivious version of distri-
bution sweeping and showed how to use it to solve the orthogonal line segment
intersection problem, as well as several other problems involving axis-parallel
objects, cache-obliviously using O(Sort(N) + T/B) memory transfers. To the
best of our knowledge, no cache-oblivious algorithm was previously known for
any intersection problem involving non-axis-parallel objects.

Our results. We present a cache-oblivious algorithm for the red-blue line seg-
ment intersection problem that uses O(Sort(N) + T/B) memory transfer. This
matches the bound of the external-memory algorithm of [4] and is optimal.

As discussed, the external-memory algorithm for this problem [4] is based
on an extended version of distribution sweeping utilizing multi-slabs. Our new
algorithm borrows ideas from both the external-memory algorithm for the red-
blue line segment intersection problem [4] and the cache-oblivious algorithm for
the orthogonal line-segment intersection problem [6]. In order to obtain a useful
notion of sweeping the plane top-down or bottom-up, we utilize the same to-
tal ordering as in [4] on a set of non-intersecting segments, which arranges the
segments intersected by any vertical line in the same order as the y-coordinates
of their intersections with the line. In the case of axis-parallel objects, such an
ordering is equivalent to the y-ordering of the vertices of the objects; in the
non-axis-parallel case, this ordering is more difficult to obtain [4]. Similar to the
cache-oblivious orthogonal line-segment intersection algorithm [6], we employ
the cache-oblivious distribution sweeping paradigm, which uses two-way merging
rather than

√

M/B-way distribution. While this eliminates the need for multi-
slabs, which do not seem to have an efficient cache-oblivious counterpart, it also
results in a recursion depth of Θ(log2 N) rather than Θ(logM/B N). This implies
that one cannot afford to spend even 1/B memory transfers per line segment at
each level of the recursion. For axis-parallel objects, Brodal and Fagerberg [6]
addressed this problem using the so-called k-merger technique, which was intro-
duced as the central idea in Funnel Sort (ie., cache-oblivious Merge Sort) [8].
This technique allows N elements to be passed through a log2 N -level merge
process using only O(Sort(N)) memory transfers, but generates the output of
each merge process in bursts, each of which has to be consumed by the next
merge process before the next burst is produced. This creates a new challenge,
as a segment may have intersections with all segments in the output stream of
a given merge process and, thus, needs access to the entire output stream to
report these intersections. To overcome this problem, Brodal and Fagerberg [6]
provided a technique to detect, count, and collect intersected segments at each
level of recursion that ensures that the number of additional accesses needed to
report intersections is proportional to the output size.

Our main contribution is the development of non-trivial new methods to ex-
tend the counting technique of Brodal and Fagerberg [6] to the case of non-axis-
parallel line segments. These ideas include a look-ahead method for identifying
certain critical segments ahead of the time they are accessed during a merge,
as well as an approximate counting method needed because exact counting of

intersected segments (as utilized in the case of axis-parallel objects) seems to be
no easier than actually reporting intersections.

2 Vertically Sorting Non-Intersecting Segments

In this section, we briefly sketch a cache-oblivious algorithm to vertically sort a
set S of N non-intersecting segments in the plane. Let s1 and s2 be segments
in S. We say that s2 is above s1, denoted s1 <A s2, if there exists a vertical
line intersecting s1 and s2 in points (x, y1) and (x, y2), respectively, and y1 <
y2. Some segments in S may be incomparable under <A, and the problem of
vertically sorting S is to extend the partial order <A to a total order <t such
that s1 <A s2 implies s1 <t s2 [4]. We call <t a vertical ordering of the segments.

Our cache-oblivious algorithm for vertically sorting S is an adaptation of
the corresponding external-memory algorithm [4]. The main ingredients are an
algorithm for finding the segments immediately above and below every segment
endpoint and an algorithm for topologically sorting the resulting planar st-graph.
The former can be solved using an offline cache-oblivious point location algo-
rithm [5]; for the latter we use a cache-oblivious adaptation of the external-
memory algorithm [7]. Details will appear in the full paper.

Theorem 1. A vertical ordering of N non-intersecting line segments in the

plane can be computed cache-obliviously using O(Sort(N)) memory transfers and

linear space.

3 Red-Blue Line Segment Intersection

In this section, we give an overview of our algorithm for finding all intersections
between a set R of non-intersecting red segments and a set B of non-intersecting
blue segments. For simplicity we assume that the x- and y-coordinates of all
endpoints are distinct. Sections 4 and 5 present the details of our algorithm.

The
√

N-merger. Our algorithm uses the
√

N -merger technique [6, 8] exten-
sively. A

√
N -merger merges

√
N sorted input streams of length

√
N into one

sorted output stream. It is defined recursively in terms of smaller k-mergers. A
k-merger takes k sorted input streams of total length at least k2 and produces
a sorted output stream by merging the input streams. The cost of merging k2

elements using a k-merger is O(Sort(k2)), which is O(Sort(N)) for k =
√

N [6,8].
A k-merger is a complete binary tree over k/2 leaves with a buffer associated

with each edge. If k = 2, the merger consists of a single node with two input
streams and one output stream; see Fig. 1(a). Otherwise, it consists of

√
k+1

√
k-

mergers as shown in Fig. 1(b); the buffers associated with the edges between the
top merger and the bottom mergers have size k. The merge process is performed
by invoking a Fill operation on the root of the merger. A Fill operation on a
node u fills the output buffer S(u) of u (the buffer between u and its parent) by

(a)

√

k

√

k
√

k
√

k

(b)

b1

b2

b3

b4

r1

r2

σ1 σ2 σ3 σ4 σ5 σ6 σ8σ7

(c)

Fig. 1. (a) A 2-merger. (b) A k-merger for k > 2. (c) Slabs and intersection types.

repeatedly removing the minimum element from S(l(u)) or S(r(u)) and placing
it into S(u), where l(u) and r(u) denote the left and right children of u. When
S(l(u)) or S(r(u)) becomes empty, a Fill operation is invoked recursively on the
corresponding child before continuing to fill S(u). The Fill operation returns
when S(u) is full or there are no elements left in any buffer below u. Since the
root’s output buffer has size N , only one Fill operation on the root is required
to place all elements in the input streams into a sorted output stream.

The basic concept in the analysis of a
√

N -merger is that of a base tree, which
is the largest subtree in the recursive definition of a

√
N -merger such that the

entire tree plus one block for each of its input and output buffers fit in memory.
The central observation is that, in order to achieve the O(Sort(k2)) merge bound,
a Fill operation on a base tree root can afford to load the whole base tree into
memory and perform O(1) memory transfers per node in the base tree; note that
this means that Fill operations on other nodes of the base tree are free. It also
means that we can associate O(1) auxiliary buffers with each merger node u and
that we can assume that a Fill operation at node u can access the first O(1)
blocks of each auxiliary buffer without any memory transfers. See [6] for details.

Distribution sweeping. To find all intersections between red and blue seg-
ments, we start by dividing the plane into q =

√
N vertical slabs σ1, . . . , σq

containing 2
√

N segment endpoints each, where N = |R| + |B| is the total
number of segments. We recurse on each slab σi to find the intersections in σi

between segments with at least one endpoint in this slab; these intersections are
shown using white dots in Fig. 1(c). Each of the remaining intersections, shown
as black dots in Fig. 1(c), involves at least one segment that completely spans the
slab containing the intersection. To find these intersections, we use a

√
N -merger

whose input streams are sorted lists of segments and/or segment endpoints asso-
ciated with slabs σ1, . . . , σq. We also associate slabs with the nodes of the merger.
The slab σu associated with a node u is the union of the slabs corresponding to
the input streams of u’s subtree. We use l(σu) and r(σu) to denote its left and
right boundaries, respectively. We call a segment with an endpoint in σu long

wrt. slab σl(u) if it spans σl(u) (segment b3 in Fig. 2(a)), and short otherwise

(segments b1, b2, b4 in Fig. 2(a)). We call an intersection in σl(u) long-long if it
involves two long segments wrt. slab σl(u) (point p3 in Fig. 2(a)), and short-long

if it involves a short and a long segment (points p1 and p2 in Fig. 2(a)). Short
and long segments and short-long and long-long intersections in slab σr(u) are
defined analogously. It is easy to see that every intersection in a slab σi that
involves a segment spanning σi is long-long or short-long at exactly one merger
node. Hence, our goal in merging the streams corresponding to slabs σ1, . . . , σq

is to report all long-long and short-long intersections at each merger node.
Throughout this paper, we only discuss finding, at every merger node u,

short-long and long-long intersections inside σl(u). The intersections in σr(u) can
be found analogously. Our algorithm finds short-long and long-long intersections
separately and finds each intersection type using several applications of the

√
N -

merger to appropriate input streams associated with slabs σ1, . . . , σq. We call one
such application a pass through the merger. In the process of merging the input
streams of the merger, each pass either reports intersections or performs some
preprocessing to allow a subsequent pass to report intersections. As we show
in Sect. 4 and 5, O(1) passes are sufficient to report all short-long and long-
long intersections, and each pass uses O(Sort(N)+Ts/B) memory transfers and
linear space, where Ts is the number of reported intersections. Let Ni denote
the number of short segments in slab σi, Ti the number of intersections between
these segments, and C(N, T) the complexity of our algorithm on N segments
that have T intersections. Then the complexity of our algorithm is given by the

recurrence C(N, T) =
∑

√
N

i=1 C(Ni, Ti) + O(Sort(N) + Ts/B), which solves to
C(N, T) = O(Sort(N) + T/B) because each original segment participates as a
non-spanning segment in at most two slabs on each level of the recursion.

Theorem 2. The red-blue line segment intersection problem can be solved cache-

obliviously using O(Sort(N) + T/B) memory transfers and linear space, where

N is the total number of line segments and T is the number of intersections.

4 Short-Long Intersections

In this section, we discuss how to find all short-long intersections at all merger
nodes using O(1) passes through the merger. Recall that we focus only on inter-
sections inside σl(u). We call such an intersection between a long red segment r
and a short blue segment b upward if b has at least one endpoint in σl(u) that is
below r (points p2, p3, p5 in Fig. 2(b)); otherwise, the intersection is downward

(points p1 and p4 in Fig. 2(b)). We focus on finding upward short-long intersec-
tions between long red and short blue segments in the remainder of this section.
The other types of short-long intersections can be found analogously. We discuss
first how to find these intersections in the desired number of memory transfers
using linear extra space per merger node. Then we discusses how to reduce the
space bound to O(N) in total.

Our algorithm uses two passes through the
√

N -merger. The first pass asso-
ciates a red list R(u) of size N (big enough to hold all segments in the input

u

σl(u) σr(u)

l(u) r(u)

b1 b2

b3

b4 r1

r2

p1

p2
p3

p4

(a)

u

σl(u) σr(u)

l(u) r(u)

b1

b2

b3

b4

r

b5

p1

p2

p3

p4

p5

(b)

u

σl(u) σr(u)

l(u) r(u)

1
2

3
4

67
8

10

9
5

(c)

u

σl(u) σr(u)

l(u) r(u)

b
rp

q

(d)

Fig. 2. (a) Short-long and long-long intersections. (b) Upward and downward inter-
sections. (c) Detecting long segments involved in upward short-long intersections. (d)
Reporting upward short-long intersections. Dashed segments are not in R(u).

if necessary) with every merger node u and populates it with all red segments
that are long wrt. σl(u) and are involved in upward short-long intersections at
node u. The second pass uses these red lists to report all upward short-long in-
tersections. Both passes merge segment streams sorted by the vertical segment
ordering from Sect. 2. More precisely, we construct a set R′ containing all red
segments and one zero-length segment per blue segment endpoint and use the
vertical ordering on R′ as a total ordering of red segments and blue segment
endpoints, bottom-up. The rank of a red segment or blue segment endpoint is
its position in this ordering.

Populating red lists. To populate all red lists, we initialize the input streams
of the merger so that the stream corresponding to slab σi stores all red segments
whose right endpoints are in σi, as well as all blue segment endpoints in σi. The
entries of the stream are sorted bottom-up (by increasing rank). Now we merge
these streams to produce one sorted output stream, where the output stream of
each merger node u contains all red segments with right endpoints in σu and
all blue segment endpoints in σu, again sorted bottom-up. The Fill operation
at a node u is the standard Fill operation of a

√
N -merger, except that, when

placing a red segment r into u’s output stream S(u), we check whether r is
involved in an upward short-long intersection at node u. If it is, we also append
segment r to u’s red list R(u).

To see how this test is performed, consider an upward short-long intersection
between a short blue segment b and a long red segment r. Segment b must have
at least one endpoint in σl(u) that is below r (has lower rank than r). Since
b and r intersect in σl(u), either b’s other endpoint q also lies in σl(u) and is
above r (has higher rank than r), or b intersects one of the slab boundaries of
σl(u) above r; see Fig. 2(c). Since we merge segments and segment endpoints at
each node u bottom-up, we process (ie., place into S(u)) all short blue segment
endpoints below r before we process r. We call a blue segment processed if we
have processed at least one of its endpoints. A segment b with one endpoint
in σl(u) is internal, left-intersecting, or right-intersecting depending on whether
both its endpoints are in σl(u), b intersects l(σl(u)) or b intersects r(σl(u)). Let
ρ(u) be the highest rank of all endpoints of processed internal blue segments, and

yl(u) the y-coordinate of the highest intersection between l(σl(u)) and processed
left-intersecting blue segments; yr(u) is defined analogously for processed right-
intersecting blue segments. By our previous discussion, r has an upward short-
long intersection at u if and only if r has rank less than ρ(u), intersects l(σl(u))
below y-coordinate yl(u) or intersects r(σl(u)) below yr(u); see Fig. 2(c).

Values ρ(u), yl(u), and yr(u) are easily maintained as the Fill operation at
node u processes blue segment endpoints. When processing a red segment r, it
is easy to test whether it is long wrt. σl(u) and its rank is less than ρ(u), its
intersection with l(σl(u)) has y-coordinate less than yl(u) or its intersection with
r(σl(u)) has y-coordinate less than yr(u). If this is the case, r has at least one
upward short-long intersection at u, and we append it to u’s red list R(u).

Reporting short-long intersections. Given the populated red lists, the sec-
ond pass starts out with the input stream of each slab σi containing all blue
segment endpoints in σi, sorted top-down (ie., by decreasing ranks). We merge
these points so that every node u outputs a stream of blue segment endpoints
in σu, sorted top-down. To report all short-long intersections at a node u, the
Fill operation at node u keeps track of the current position in R(u), which is
the segment with minimum rank in R(u) we have inspected during the current
pass. Initially, this is the last segment in R(u). Now when processing an endpoint
p ∈ σl(u) of a blue segment b, we first scan backwards in R(u) from the current
position to find the segment r with minimum rank in R(u) whose rank is greater
than that of p. Segment r becomes the new current position in R(u). Segment
r is the lowest segment in R(u) that can have an upward intersection with b,
and all segments having such intersections with b form a contiguous sequence in
R(u) starting with r. Therefore, we scan forward from r, reporting intersections
between scanned segments and b until we find the first segment in R(u) that
does not have an upward short-long intersection with b; see Fig. 2(d).

Since every segment placed into R(u) is involved in at least one intersection
and all but O(1) accesses to a segment in R(u) can be charged to reported
intersections, the scanning of red lists adds only O(Ts/B) to the O(Sort(N)) cost
of the merger. The space usage of the algorithm can be reduced to O(N + Ts)
by running the pass populating red lists twice. The first time, we only count
segments that would be placed into each list and then allocate a list of the
appropriate size to each node. The second time, we place segments into the
allocated lists. Using the same technique as in [6], the space can then be reduced
further to O(N). Details will appear in the full paper.

Lemma 1. Short-long intersections can be reported using O(Sort(N) + Ts/B)
memory transfers and linear space.

5 Long-Long Intersections

In this section, we discuss how to find the long-long intersections at all merger
nodes. Again, we focus on finding, at every node u, only long-long intersections

inside slab σl(u). Similar to the short-long case, we first describe our procedure
assuming we can allocate two lists of size N to each node. Later we discuss how
to reduce the space usage to O(N).

A simple solution using superlinear space. After some preprocessing dis-
cussed later in this section, long-long intersections can be found using one pass
through the

√
N -merger. This time, the input stream corresponding to slab σi

contains all segments whose right endpoints are inside σi and which intersect
l(σi). The segments are sorted by decreasing y-coordinates of their intersections
with l(σi). The goal of the merge process at a merger node u is to produce an
output stream of all segments with right endpoints in σu and which intersect
l(σu). Again, these segments are to be output sorted by decreasing y-coordinates
of their intersections with l(σu). In the process of producing its output stream,
each merger node u reports all long-long intersections inside σl(u).

This merge process in itself poses a challenge compared to the short-long
case, as segments in S(r(u)) that intersect both r(σl(u)) and l(σl(u)) may have
to be placed into S(u) in a different order from the one in which they arrive in
S(r(u)); see Fig. 3(a). Thus, we need to allow segments to “pass each other”,
which we accomplish using two buffers B(u) and R(u) of size N associated with
each node u in the merger. Buffer B(u) is used to temporarily hold blue segments
that need to be overtaken by red segments at u; these segments are sorted by
the y-coordinates of their intersections with l(σu). Buffer R(u) serves the same
purpose for red segments. Initially, B(u) and R(u) are empty.

To implement the merge process, we also need a “look-ahead” mechanism
that allows each node u to identify the next long segment of each color to be
retrieved from S(r(u)) without actually retrieving it. We discuss below how to
provide such a mechanism. Again, the need for such a mechanism arises because
long red and blue segments may change their order between S(r(u)) and S(u).
If the topmost segment b in S(r(u)) is long and blue, we can decide whether it is
the next segment to be placed into S(u) only if we know whether the next long
red segment r intersects l(σu) above b; but there may be an arbitrary number of
blue and short red segments between b and r in S(r(u)), and we cannot afford
to scan ahead until we find r in S(r(u)). Look-ahead provides us with r without
the need to scan through S(r(u)).

A Fill operation at node u now reduces to repeatedly identifying the next
segment s to be placed into S(u). This segment is currently in S(l(u)), S(r(u)),
R(u) or B(u) and is the one with the highest intersection with l(σu) among the
segments remaining in these streams. Thus, if s belongs to S(l(u)), it must be
the next segment s′ in S(l(u)) because the segments in S(l(u)) are sorted by
their intersections with l(σl(u)) = l(σu). If s belongs to S(r(u)), R(u) or B(u),
it must be the next long red segment r or the next long blue segment b to be
placed into S(u). Note that our look-ahead mechanism provides us with r and
b. To decide which of s′, r, and b is the next segment s to be placed into S(u),
it suffices to compare their intersections with l(σu).

u

σl(u) σr(u)

l(u) r(u)

r

b2

b1

b3

b4

(a)

u

σl(u) σr(u)

l(u) r(u)
s1
s2
s3
s4
s5
s6
s7
s8

(b)

u

σl(u) σr(u)

l(u) r(u)

b

(c)

Fig. 3. (a) Segments b1, b2, b3, b4 arrive before r in S(r(u)) but need to be placed into
S(u) after r. Thus, r must be able to overtake them at u. (b) Implementation of
look-ahead. Bold solid segments are in Rt(u), dashed ones are not. Arrows indicate
how every long segment finds the next long segment. (c) Approximate counting using
sampling. The bold segments are in the sample, the dashed ones are not.

In order to place s into S(u), we need to locate it in S(l(u)), S(r(u)), B(u)
or R(u), remove it, and output it into S(u). If s ∈ S(l(u)), B(u) or R(u), this
is easy because s is the next segment in S(l(u)) or the first segment in B(u)
or R(u). So assume that s is long, wlog. red, and stored in S(r(u)). Then we
retrieve segments from S(r(u)) until we retrieve s. Since the segments in S(r(u))
are sorted by their intersections with l(σr(u)) and red segments do not intersect,
there cannot be any long red segment in S(r(u)) that is retrieved before s. Thus,
all segments retrieved from S(r(u)) before s are blue or short. Short segments
can be discarded because they cannot be involved in any long-long intersections
at u or any of its ancestors. Long blue segments are appended to B(u) in the
order they are retrieved, which is easily seen to maintain the segments in B(u)
sorted by their intersections with l(σl(u)).

So far we have talked only about outputting the segments at each node u in
the correct order. To discuss how to report intersections, we say that a segment
is placed into S(u) directly if it is never placed into R(u) or B(u); otherwise, we
say that it is overtaken by at least one segment. It is not hard to see that every
long-long intersection at a node u involves a segment s placed directly into S(u)
and a segment that is overtaken by s; a segment s placed directly into S(u) has
long-long intersections with exactly those segments of the other color that are
in B(u) or R(u) at the time when s is placed into S(u). Thus, we can augment
the merge process at u to report long-long intersections as follows. Immediately
before placing a long red segment r directly into S(u), we scan B(u) to report
all intersections between r and the segments in B(u). When a long blue segment
b is placed directly into S(u), we scan R(u) instead. Since only segments that
are overtaken (and thus involved in at least one intersection) are placed into
R(u) and B(u) and every scan of R(u) and B(u) reports one intersection per
scanned segment, the manipulation of these buffers at all merger nodes adds
only O(Ts/B) memory transfers to the O(Sort(N)) cost of the merger. Next
we discuss how to implement the look-ahead mechanism using only O(Sort(N))
additional memory transfers, which leads to an O(Sort(N) + Ts/B) cost for
finding all long-long intersections.

Look-ahead. Consider the merge process reporting long-long intersections at a
node u. Given look-ahead at u’s children, it is easy to ensure that every segment
in S(l(u)) or S(r(u)) knows the next segment s′ of the same color in S(l(u)) or
S(r(u)), respectively. When placing a long segment s from S(r(u)) into S(u),
however, we need to identify not the next segment of the same color as s in
S(r(u)) but the next long such segment s′′. If s′ is long, then s′′ = s′. Otherwise,
we say that s′ terminates at node u, as it is not placed into S(u). In this case,
s′ comes between s and s′′ in S(r(u)). Note also that every segment terminates
at exactly one node in the merger.

To allow us to identify segment s′′, we preprocess the merger and associate
two lists Rt(u) and Bt(u) with every node u. List Rt(u) (resp., Bt(u)) contains all
those long red (resp., blue) segments in S(r(u)) that are immediately preceded by
red (resp., blue) segments that terminate at u. Given these lists, a long segment
s in S(r(u)) that is succeeded by a terminating segment of the same color in
S(r(u)) can identify the next long segment of the same color by retrieving the
next segment from Rt(u) or Bt(u), depending on its color; see Fig. 3(b). These
lists are easily constructed in O(Sort(N)) memory transfers by merging the blue
and red segments independently; details will appear in the full paper. In order
to ensure that each list uses only as much space as it needs—and, thus, that
all look-ahead lists use only O(N) space—we run each merge twice. The first
pass counts the number of segments to be placed into each list, the second one
populates the lists after allocating the required space to each list.

During the merge that reports long-long intersections, each list Rt(u) or
Bt(u) is scanned exactly once, as the segments in these lists are retrieved in the
order they are stored. Thus, scanning these lists uses O(N/B) memory transfers.

Linear space via approximate counting of intersected segments. Finally,
we discuss how to reduce the space usage of the merge that finds long-long
intersections to O(N + Ts). Using the same technique as in [6] again, the space
usage can then be reduced further to O(N). Details appear in the full paper.

To achieve this space reduction, we need to reduce the total size of the red and
blue buffers R(u) and B(u) to O(N +Ts). We observe that R(u) and B(u) never
contain more than cb(u) and cr(u) segments, respectively, where cb(u) and cr(u)
denote the maximum number of red (resp., blue) segments intersected by any
long blue (resp., red) segment at u. Hence, it suffices to determine these values
and allocate cb(u) space for R(u) and cr(u) space for B(u). Since these values
summed over all nodes of the merger do not sum to more than Ts, this would
ensure that the total space usage of all buffers R(u) and B(u) is at most Ts.
However, it seems difficult to determine cb(u) and cr(u) exactly without already
using buffers R(u) and B(u). Instead, we compute upper bounds c′b(u) and c′r(u)

such that cb(u) ≤ c′b(u) ≤ cb(u) +
√

N and cr(u) ≤ c′r(u) ≤ cr(u) +
√

N , which
can be done in linear space. By allocating c′b(u) space for buffer R(u) and c′r(u)

space for buffer B(u), each buffer is big enough and we waste only O(
√

N) space
per merger node. Since there are O(

√
N) merger nodes, the total space used by

all buffers is therefore O(N + Ts).

We discuss how to compute values c′b(u), as values c′r(u) can be computed

similarly. To compute values c′b(u), we compute a
√

N/2-sample of the long red
segments passing through each node u and determine for every long blue segment
b how many segments in the sample it intersects. If this number is h(b), then b
intersects between

√
N(h(b) − 1)/2 and

√
N(h(b) + 1)/2 long red segments at

node u. See Fig. 3(c). We choose c′b(u) to be the maximum of
√

N(h(b) + 1)/2
taken over all long blue segments b at node u.

More precisely, we use two passes through the
√

N -merger after allocating a
sample buffer Rs(u) of size 2

√
N to each node. The first pass merges red segments

by their intersections with left slab boundaries. At a node u, every
√

N/2’th long
segment is placed into Rs(u). The second pass merges blue segments by their
intersections with left slab boundaries. Before this pass, we set c′b(u) = 0 for every
node u. During the merge, when we process a long blue segment b, we determine
the number hl(b) of segments in Rs(u) that intersect l(σl(u)) below b, as well
as the number hr(b) of segments in Rs(u) that intersect r(σl(u)) below r. Let

h(b) = |hr(b)−hl(b)|. If
√

N(h(b)+1)/2 > c′b(u), we set c′b(u) =
√

N(h(b)+1)/2.

Since we allocate only O(
√

N) space to each merger node during the approx-
imate counting of intersections, the space usage of this step is linear. Moreover,
we merge red and blue segments once, and it can be shown that the computation
of values hr(b) and hl(b) for all blue segments b passing through node u requires
two scans of list Rs(u) in total. Hence, this adds O(N/B) to the merge cost, and
we obtain the following lemma, which completes the proof of Theorem 2.

Lemma 2. Long-long intersections can be reported using O(Sort(N) + Ts/B)
memory transfers and linear space.

References

1. A. Aggarwal, J.S. Vitter. The Input/Output complexity of sorting and related
problems. Comm. ACM, 31(9):1116–1127, 1988.

2. L. Arge. External memory data structures. In J. Abello, P. M. Pardalos, M. G. C.
Resende (eds.), Handbook of Massive Data Sets. Kluwer Academic Publishers, 2002.

3. L. Arge, G.S. Brodal, R. Fagerberg. Cache-oblivious data structures. In D. Mehta,
S. Sahni (eds.), Handbook on Data Structures and Applications. CRC Press, 2005.

4. L. Arge, D.E. Vengroff, J.S. Vitter. External-memory algorithms for processing
line segments in geographic information systems. Algorithmica, 47:1–25, 2007.

5. M.A. Bender, R. Cole, R. Raman. Exponential structures for cache-oblivious al-
gorithms. In Proc. ICALP, pp. 195–207, 2002.

6. G.S. Brodal, R. Fagerberg. Cache oblivious distribution sweeping. In Proc. ICALP,
pp. 426–438, 2002.

7. Y.-J. Chiang, M.T. Goodrich, E.F. Grove, R. Tamassia, D.E. Vengroff, J.S. Vitter.
External-memory graph algorithms. In Proc. SODA, pp. 139–149, 1995.

8. M. Frigo, C.E. Leiserson, H. Prokop, S. Ramachandran. Cache-oblivious algo-
rithms. In Proc. FOCS, pp. 285–298, 1999.

9. M.T. Goodrich, J.-J. Tsay, D.E. Vengroff, J.S. Vitter. External-memory computa-
tional geometry. In Proc. FOCS, pp. 714–723, 1993.

10. J.S. Vitter. External memory algorithms and data structures: Dealing with MAS-
SIVE data. ACM Comp. Surveys, 33(2):209–271, 2001.

