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ory cells are provided. In this model, we focus on the design of resilient
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tized cost per operation, and O(n) space complexity. We then propose an
optimal deterministic static dictionary supporting searches in ©(log n+6)
time in the worst case, and we show how to use it in a dynamic setting in
order to support updates in O(logn + §) amortized time. Our dynamic
dictionary also supports range queries in O(log n+6+t) worst case time,
where t is the size of the output. Finally, we show that every resilient
search tree (with some reasonable properties) must take 2(logn + §)
worst-case time per search.
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1 Introduction

Memories in modern computing platforms are not always fully reliable, and
sometimes the content of a memory word may be temporarily or permanently
lost or corrupted. This may depend on manufacturing defects, power failures, or
environmental conditions such as cosmic radiation and alpha particles [T7122].
Furthermore, latest trends in storage development point out that memory devices
are getting smaller and more complex. Additionally, they work at lower voltages
and higher frequencies [10]. All these improvements increase the likelihood of soft
memory errors, whose rate is expected to increase for both SRAM and DRAM
memories [24]. These phenomena can seriously affect the computation, especially
if the amount of data to be processed is huge. This is for example the case for
Web search engines, which store and process Terabytes of dynamic data sets,
including inverted indices which have to be maintained sorted for fast document
access. For such large data structures, even a small failure probability can result
in bit flips in the index, which may become responsible of erroneous answers to
keyword searches [T§].

Memory corruptions have been addressed in various ways, both at the hard-
ware and software level. At the hardware level, memory corruptions are tackled
using error detection mechanisms, such as redundancy, parity checking or Ham-
ming codes. However, adopting such mechanisms involves non-negligible penal-
ties with respect to performance, size, and cost, thus memories implementing
them are rarely found in large scale clusters or ordinary workstations. Dealing
with unreliable information has been addressed in the algorithmic community
in a variety of different settings, including the liar model [ISI220023], fault-
tolerant sorting networks [2I2T25], resiliency of pointer-based data structures [3],
parallel models of computation with faulty memories [9].

A model for memory faults. Finocchi and Ttaliano [16] introduced the faulty-
memory RAM. In this model, we assume that there is an adaptive adversary
which can corrupt up to § memory words, in any place and at any time (even
simultaneously). We remark that é is not a constant, but is a parameter of the
model. The pessimistic faulty-memory RAM captures situations like cosmic-rays
bursts and memories with non-uniform fault-probability, which would be diffi-
cult to be modeled otherwise. The model also assumes that there are O(1) safe
memory words which cannot be accessed by the adversary. Note that, without
this assumption, no reliable computation is possible: in particular, the O(1) safe
memory can store the code of the algorithm itself, which otherwise could be
corrupted by the adversary. In the case of randomized algorithms, we assume
that the random bits are not accessible to the adversary. Moreover, we assume
that reading a memory word (in the unsafe memory) is an atomic operation,
that is the adversary cannot corrupt a memory word after the reading process
has started. Without the last two assumptions, most of the power of random-
ization would be lost in our setting. An algorithm or a data structure is called
resilient if it works correctly at least on the set of uncorrupted cells in the input.
In particular, a resilient searching algorithm returns a positive answer if there
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exists an uncorrupted element in the input equal to the search key. If there is
no element, corrupted or uncorrupted, matching the search key, the algorithm
returns a negative answer. If there is a corrupted value equal to the search key,
the answer can be either positive or negative.

Previous work. Several problems have been addressed in the faulty-memory
RAM. In the original paper [16], lower bounds and (non-optimal) algorithms
for sorting and searching were given. In particular, it has been proved in [16]
that searching in a sorted array takes 2(logn + 6) time, i.e., up to O(logn)
corruptions can be tolerated while still preserving the classical O(logn) search-
ing bound. Matching upper bounds for sorting and randomized searching, as
well as an O(logn + 6'*¢) deterministic searching algorithm, were then given
in [T4]. Resilient search trees that support searches, insertions, and deletions
in O(logn + 6%) amortized time were introduced in [I5]. Recently, Jgrgensen
et al. [I9] proposed priority queues supporting both insert and delete-min oper-
ations in O(logn + 6) amortized time. Finally, in [I3] it was empirically shown
that resilient sorting algorithms are of practical interest.

Our contribution. In this paper we continue the work on resilient dictionaries.
We present a simple randomized dynamic search tree achieving O(logn + 6)
amortized expected time per operation. We then present the first resilient algo-
rithm for deterministically searching in a sorted array in optimal O(logn + 6)
time, matching the lower bound from [I6]. We use this algorithm, to build a
resilient deterministic dynamic dictionary supporting searches in O(logn + 6)
worst case time and updates in O(logn + 6) amortized time. Range queries are
supported in O(logn + 6 + ¢) time where ¢ is the size of the output. Further-
more, we prove a lower bound stating that every resilient dictionary (with some
reasonable properties) must take 2(logn + ) worst-case time per search.

Preliminaries. We denote by « the actual number of faults. Of course a < 6. A
resilient variable x consists of (26 + 1) copies of a (classical) variable. The value
of x is the majority value of its copies. This value is well defined since at most 6
copies can be corrupted. Assigning a value to x means assigning such value to
all the copies of x. Note that both reading and updating 2 can be done in O(8)
time and O(1) space (using, e.g., the algorithm for majority computation in [6]).

2 A Simple Randomized Resilient Dictionary

In this section we present a simple randomized resilient search tree, which builds
upon the resilient search tree of [I5]. Our search tree takes O(log n+¢) amortized
time per operation, in expectation. We maintain a dynamically evolving set of
intervals Iy, I, ... Iy. Initially, when the set of keys is empty, there is a unique
interval I; = (—o0, +00). Throughout the sequence of operations we maintain
the following invariants:

(i) The intervals are non-overlapping, and their union is (—oo, +00).
(ii) Each interval contains less than 26 keys.
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Fig. 1. A resilient search tree

(iii) Each interval contains more than §/2 keys, except possibly for the leftmost
and the rightmost intervals (boundary intervals).

To implement any search, insert, or delete of a key e, we first need to find the
interval I(e) containing e (interval search). Invariant (i) guarantees that such an
interval exists, and is unique. Invariants (i) and (iii) have a crucial role in the
amortized analysis of the algorithm, as we will clarify later.

The intervals are maintained in a standard balanced binary search tree.
Throughout the paper we use as a reference implementation an AVL tree [I1].
However, the same basic approach also works with other search trees. Intervals
are ordered according to, say, their left endpoints. For each node v of the search
tree, we maintain the following variables:

1. (reliably) the endpoints of the corresponding interval I(v) and the num-
ber |I(v)| of keys contained in the interval I(v);

2. (reliably) the addresses of the left child, the right child, and the parent of v,
and all the information needed to keep the search tree balanced with the
implementation considered;

3. (unreliably, i.e., in a single copy) the (unordered) set of current keys con-
tained in I(v), stored in an array of size 26.

For an example, see Figure[Il The nodes of the search tree are stored in an array.
The main reason for this is that it makes it easy to check whether a pointer/index
points to a search tree node. Otherwise, the algorithm could jump outside of the
search tree by following a corrupted pointer, without even noticing it: this would
make the behavior of the algorithm unpredictable. The address of the array and
the current number of nodes is kept in safe memory, together with the address
of the root node. We use a standard doubling technique to ensure that the size
of the array is linear in the current number of nodes. The amortized overhead
per insertion/deletion of a node due to doubling is O(6). As we will see, this
cost can be charged to the cost of the interval search which is performed in each
operation: from now on we will not mention this cost any further.
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We next describe how to search, insert, and delete a given key e.

Search. Every search is performed by first searching for the interval (e) contain-
ing e (interval search), and then by linearly searching for e in I(e). The interval
search is implemented as follows. We perform a classical search, where for each
relevant resilient variable we consider one of its 26 4+ 1 copies chosen uniformly
at random. We implement the search so as to read at most one random copy
of each resilient variable (unless pointers corruption forces the search to cycle).
This assumption will turn out to be useful in the analysis. Once the search is
concluded, we check reliably (in O(8) time) whether the final interval contains e.
If not, the search is restarted from scratch. The search is restarted also as soon
as an inconsistency is found, for instance if the number of steps performed gets
larger than the height of the tree.

Insert. We initially find I = I(e) with the procedure above. Then, if e is not
already in the list of keys associated to I, we add e to such list. If the size of the
list becomes 26 because of this insertion, we perform the following operations in
order to preserve Invariant (ii). We delete interval I from the search tree, and
we split I in two non-overlapping subintervals L and R, L U R = I, which take
the smaller and larger half of the keys of I, respectively. In order to split the
keys of I in two halves, we use two-way BubbleSort as described in [T4]. This
takes time O(6%). Eventually, we insert L and R in the search tree. Both deletion
and insertion of intervals from/in the search tree are performed in the standard
way (with rotations for balancing), but using resilient variables only, hence in
time O(élogn). Note that Invariants (i) and (iii) are preserved.

Delete. We first find I = I(e) using the search procedure above. If we find e
in the list of keys associated to I, we delete e. Then, if |[I| = §/2 and I is not
a boundary interval, we perform, reliably, the following operations in order to
preserve Invariant (iii). First, we search the interval L to the left of I, and delete
both L and I from the search tree. Then we do two different things, depending
on the size of L. If |L| < §, we merge L and I into a unique interval I’ = L U T,
and insert I’ in the search tree. Otherwise (|L| > §), we create two new non-
overlapping intervals L' and I’ such that L'’ UI’ = L U I, L' contains all the
keys of L but the §/4 largest ones, and I’ contains the remaining keys of L U I.
Also in this case creating L’ and I’ takes time O(6%) with two-way BubbleSort.
We next insert intervals L’ and I’ into the search tree. Again, the cost per
insertion/deletion of an interval is O(6logn), since we use resilient variables.
Observe that Invariants (i) and (ii) are preserved.

By Invariant (iii), the total number of nodes in the search tree is O(1 +n/é).
Since each node takes ©(§) space, and thanks to doubling, the space occupied
by the search tree is O(n + §). This is also an upper bound on the overall space
complexity. The space complexity can be reduced to O(n) by storing the variables
associated to boundary intervals in the O(1) size safe memory, and by handling
the corresponding set of keys via doubling. This change can be done without
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affecting the running time of the operations. We remark that the implementation
of the interval search is the main difference between our improved search tree
and the search tree in [I5].

Theorem 1. The resilient search tree above has O(logn+6) expected amortized
time per operation and O(n) space complezity.

Proof. The space complexity is discussed above. Let S(n, ) be the expected
time needed to perform an interval search. By Invariant (ii), each search oper-
ation takes S(n,d) + O(6) expected time. The same holds for insert and delete
operations, when the structure of the search tree has not to be modified. Oth-
erwise, there is an extra O(8logn + 62) cost. However, it is not hard to show
that, by Invariants (ii) and (iii), the search tree is modified every (2(6) insert
and/or delete operations (see [I5] for a formal proof of this simple fact). Hence
the amortized cost of insert and delete operations is S(n,8) + O(logn + 6) in
expectation.

It remains to bound S(n, §). Each search round takes O(logn + 6) time. Thus
it is sufficient to show that the expected number of rounds is constant. Consider
a given round. Let a; be the actual number of faults happening at any time
on the i-th resilient variable considered during the round, ¢ = 1,2,...,p. The
probability that all the copies chosen during a given round are faithful is at least

1 * 1 @ O >(1- =1 .
20+1 20+1 20+1 20+1
Given this event, by the assumptions on the algorithm the resilient variables

considered must be all distinct. As a consequence Zle a; < a <8, and hence

p .
1_22’:10[1 2 1— 6 21
20+1 20+1 2

It follows that the expected number of rounds is at most 2. a

3 An Optimal Static Dictionary

In this section we close the gap between lower and upper bounds for deterministic
resilient searching algorithms. We present a resilient algorithm that searches for
an element in a sorted array in O(logn + ¢) time in the worst case, which
is optimal [I6]. The previously best known deterministic dictionary supports
searches in O(logn + 6'7¢) time [14].

We design a binary search algorithm, which only advance one level in the
wrong direction for each corrupted element misleading it. We then design a
verification procedure that checks the result of the binary search. We count the
number of detected corruptions and adjust our algorithm accordingly to ensure
that no element is used more than once. To avoid reading the same faulty value
twice, we divide the input array into implicit blocks. Each block consists of 56+ 1
consecutive elements of the input and is structured in three segments: the left
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verification segment, LV, consists of the first 26 elements, the next 6+ 1 elements
form the query segment, @, and the right verification segment, RV, consists of
the last 26 elements of the block. The left and right verification segments, LV
and RV, are used only by the verification procedure. The elements in the query
segment are used to define 6 + 1 sorted sequences Sy, ..., Ss. The j’th element
of sequence S;, S;[j], is the i’th element of the query segment of the j’th block,
and is located at position pos;(j) = (56 + 1)j + 26 + ¢ in the input array.

We store a value k € {0, ..., 6} in safe memory identifying the sequence Sy on
which we perform the binary search. Also, k identifies the number of corruptions
detected. Whenever we detect a corruption, we change the sequence on which we
perform the search by incrementing k. Since there are § 4+ 1 disjoint sequences,
there exists at least one sequence without any corruptions.

Binary search. The binary search is performed on the elements of S;. We store
in safe memory the search key, e, and the left and right sequence indices, [ and r,
used by the binary search. Initially, [ = —1 is the position of an implicit —oo
element. Similarly, 7 is the position of an implicit co to the right of the last
element. Since each element in Sj belongs to a distinct block, [ and r also
identify two blocks B; and B,..

In each step of the binary search the element at position i = [(I + r)/2]
in Si is compared with e. Assume without loss of generality that this element
is smaller than e. We set | to ¢ and decrement r by one. We then compare e
with Sg[r]. If this element is larger than e, the search continues. Otherwise, if
no corruptions have occurred, the position of the search element is in block B,
or B,y in the input array. When two adjacent elements are identified as in the
case just described, or when [ and r become adjacent, we invoke a verification
procedure on the corresponding blocks.

The verification procedure determines whether the two adjacent blocks, de-
noted B; and B;;1, are correctly identified. If the verification succeeds, the bi-
nary search is completed, and all the elements in the two corresponding adjacent
blocks, B; and B;;1 are scanned. The search returns true if e is found during the
scan, and false otherwise. If the verification fails, we backtrack the search two
steps, since it may have been mislead by corruptions. To facilitate backtracking,
we store two word-sized bit-vectors, d and f in safe memory. The i’th bit of d
indicates the direction of the search and the i’th bit of f indicates whether there
was a rounding in computing the middle element in the ’th step of the binary
search respectively. We can compute the values of [ and r in the previous step
by retrieving the relevant bits of d and f. If the verification fails, it detects at
least one corruption and therefore k is incremented, thus the search continues
on a different sequence Sy.

Verification phase. Verification is performed on two adjacent blocks, B; and
Bii1. It either determines that e lies in B; or B; 1 or detects corruptions. The
verification is an iterative algorithm maintaining a value which expresses the
confidence that the search key resides in B; or B;11. We compute the left con-
fidence, ¢, which is a value that quantifies the confidence that e is in B; or to
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the right of it. Intuitively, an element in LV; smaller than e is consistent with
the thesis that e is in B; or to the right of it. However, an element in LV; larger
than e is inconsistent. Similarly, we compute the right confidence, c,, to express
the confidence that e is in B;1 or to the left of it.

We compute ¢; by scanning a sub-interval of the left verification segment, LV},
of B;. Similarly, the right confidence is computed by scanning the right verifica-
tion segment, RV;;1, of B;y;. Initially, we set ¢; = 1 and ¢, = 1. We scan LV,
from right to left starting at the element at index v; = 26 — 2k in LV;. Similarly,
we scan RV, from left to right beginning with the element at position v, = 2k.
In an iteration we compare LV;[v;] and RV;;1[v,] against e. If LV;[v;] < e, we
increment ¢; by one, otherwise it is decreased by one and k is increased by one.
Similarly, if RV;yi[v.] > e, we increment ¢, by one; otherwise, we decrease ¢,
and increase k. The verification procedure stops when min(c,, ¢;) equals § —k+1
or 0. The verification succeeds in the former case, and fails in the latter.

Theorem 2. The algorithm is resilient and searches for an element in a sorted
array in O(logn + 6) time.

Proof. We first prove that when ¢; or ¢, decrease during verification, a corruption
has been detected. We increase ¢; when an element smaller than e is encountered
in LV;, and decrease it otherwise. Intuitively, ¢; can been seen as the size of a
stack S. When we encounter an element smaller than e, we treat it as if it was
pushed, and as if a pop occurred otherwise. Initially, the element g from the
query segment of B; used by the binary search is pushed in S. Since g was used
to define the left boundary in the binary search, g < e at that time. Each time
an element LV;[v] < e is popped from the stack, it is matched with the current
element LV;[v]. Since LV;[v] < e < LV;[u] and v; < v, at least one of LV;[v]
and LV;[v] is corrupted, and therefore each match corresponds to detecting at
least one corruption. It follows that if 2¢ — 1 elements are scanned on either side
during a failed verification, then at least ¢ corruptions are detected.

We now argue that no single corruption is counted twice. A corruption is
detected if and only if two elements are matched during verification. Thus it
suffices to argue that no element participates in more than one matching. We
first analyze corruptions occurring in the left and right verification segments.
Since the verification starts at index 2(6 — k) in the left verification segment
and k is increased when a corruption is detected, no element is accessed twice,
and therefore not matched twice either. A similar argument holds for the right
verification segment. Each failed verification increments k, thus no element from
a query segment is read more than once. In each step of the binary search both
the left and the right indices are updated. Whenever we backtrack the binary
search, the last two updates of [ and r are reverted. Therefore, if the same block
is used in a subsequent verification, a new element from the query segment is
read, and this new element is the one initially on the stack. We conclude that
elements in the query segments, which are initially placed on the stack, are never
matched twice either.

To argue correctness we prove that if a verification is successful, and e is
not found in the scan of the two blocks, then no uncorrupted element equal to e
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exists in the input. If a verification succeeded then ¢; > 6 —k+1. Since only § — k
more corruptions are possible and since an element equal to e was not found,
there is at least one uncorrupted element in LV, smaller than e, and thus there
can not be any uncorrupted elements equal to e to the left of B; in the input
array. By a similar argument, if ¢, > 6 — k + 1, then all uncorrupted elements
to the right of B;;1 in the input array are larger than e.

We now analyze the running time. We charge each backtracking of the binary
search to the verification procedure that triggered it. Therefore, the total time of
the algorithm is O(logn) plus the time required by verifications. To bound the
time used for all verification steps we use the fact that if O(f) time is used for a
verification step, then £2(f) corruptions are detected or the algorithm ends. At
most O(8) time is used in the last verification for scanning the two blocks. O

4 A Dynamic Dictionary

In this section we describe a linear space resilient dynamic dictionary support-
ing searches in optimal O(logn + §) worst case time and range queries in op-
timal O(logn + 6 + t) worst case time, where ¢ is the size of the output. The
amortized update cost is O(logn + ¢). The previous best known deterministic
dynamic dictionary, is the resilient search tree of [I5], which supports searches
and updates in O(logn + %) amortized time.

Structure. The sorted sequence of elements is partitioned into a sequence of leaf
structures, each storing ©(6logn) elements. For each leaf structure we select a
guiding element, and these O(n/(6logn)) elements are also stored in the leaves
of a reliably stored binary search tree. Each guiding element is larger than all
uncorrupted elements in the corresponding leaf structure.

For this reliable top tree T', we use the binary search tree in [7], which consists
of h =log|T| + O(1) levels when containing |T'| elements. In the full version [g]
it is shown how the tree can be maintained such that the first h — 2 levels are
complete. We lay out the tree in memory in left-to-right breadth first order,
as specified in [7]. Tt uses linear space, and supports updates in O(log? |T))
amortized time. Global rebuilding is used when |T'| changes by a constant factor.

All the elements in the top tree are stored as resilient variables. . Since a
resilient variable takes O(6) space, O(8|T'|) space is used for the entire structure.
The time used for storing and retrieving a resilient variable is O(8), and there-
fore the additional work required to handle the resilient variables increases the
amortized update cost to O(6log? |T|) time.

The leaf structure consists of a top bucket B and b buckets, By, ..., By_1,
where logn < b < 4logn. Each bucket B; contains between § and 66 input
elements, stored consecutively in an array of size 66, and uncorrupted elements
in B; are smaller than uncorrupted elements in B;41. For each bucket B;, the
top bucket B associates a guiding element larger than all elements in B;, a
pointer to B;, and the size of B;, all stored reliably. Since storing a value reliably
uses O(6) space, the total space used by the top bucket is O(6 logn). The guiding
elements of B are stored as a sorted array to enable fast searches.



356 G.S. Brodal et al.

Searching. The search operation first finds a leaf in the top tree, and then
searches the corresponding leaf structure. Let i denote the height of T'. If h < 3,
we perform a standard tree search from the root of T" using the reliably stored
guiding elements. Otherwise, we locate internal nodes, v1 and vy, with guiding
elements g1 and gs, such that g1 < e < go, where e is the search key. Since h — 2
is the last complete level of T', level £ = h — 3 is complete and contains only
internal nodes. The breadth first layout of T" ensures that elements of level ¢ are
stored consecutively in memory. The search operation locates v; and vy using the
deterministic resilient search algorithm from Section Bl on the array defined by
level £. The search only considers the 26+ 1 cells in each node containing guiding
elements and ignores memory used for auxiliary information. Although they are
stored using as resilient variables, each of the 26+ 1 copies are considered a single
element by the search. We modify the resilient searching algorithm previously
introduced such that it reports two consecutive blocks with the property that if
the search key is in the structure, it is contained in one of them. The reported
two blocks, each of size 56 + 1, span O(1) nodes of level ¢ and the guiding
elements of these are queried reliably to locate v; and vo. The appropriate leaf
can be in either of the subtrees rooted at v; and vo, and we perform a standard
tree search in both using the reliably stored guiding elements. Searching for an
element in a leaf structure is performed by using the resilient search algorithm
from SectionBlon the top bucket, B, similar to the way v1 and vo were found in 7T'.
The corresponding reliably stored pointer is then followed to a bucket B;, which
is scanned. Range queries can be performed by scanning the level ¢, starting
at v, and reporting relevant elements in the leaves below it.

Updates. Efficiently updating the structure is performed using standard buck-
eting techniques. To insert an element into the dictionary, we first perform a
search to locate the appropriate bucket B; in a leaf structure, and then the el-
ement is appended to B; and the size updated. When the size of B; increases
to 66, we split it into two buckets. We compute a guiding element that splits B;
in O(6?) time by repeatedly scanning B; and extracting the minimum element.
The element m returned by the last iteration is kept in safe memory. In each
iteration, we select a new m which is the minimum element in B; larger than
the current m. Since at most § corruptions can occur, B; contains at least 20
uncorrupted elements smaller than m and 26 uncorrupted elements larger, af-
ter | B;|/2 iterations. The new split element is reliably inserted in the top bucket
using an insertion sort step in O(8 logn) time. Similarly, when the degree the top
bucket becomes 4logn, it is split in two new leaf structures in O(élogn) time,
and a new guiding element is inserted into the top tree. Deletions are handled
similarly.

Theorem 3. The resilient dynamic dictionary structure uses O(n) space while
supporting searches in O(logn + 6) time worst case with an amortized update
cost of O(logn+6). Range queries with an output size of t is performed in worst
case O(logn + 6 +t) time.
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5 A Lower Bound

In the following we restrict our attention to comparison based dictionaries where
the keys are stored in one or more arrays, and the address of each array is
maintained in one or more pointers. These assumptions can be partially relaxed.
However, we do not discuss such relaxations since they do not add much to the
discussion below.

Theorem 4. Every resilient search tree of the kind above requires 2(logn + 6)
worst-case time per search.

Proof. Every search tree, even in a system without memory faults, takes £2(log n)
worst-case time per search. This lower bound extends immediately to the case of
resilient search trees. Hence, without loss of generality, assume that logn = o(6).
Under this assumption, it is sufficient to show that the time required by a resilient
search operation is 2(9).

Consider any given search tree ST of the kind considered. Let K1, Ko, ..., K,
be the arrays in unsafe memory where (subset of) the keys are maintained. For
each K; there must be at least one pointer containing its address. Recall that
only a constant number of keys can be kept in safe memory. Hence ©(n) keys
are stored in unsafe memory only.

Suppose there is an array K; containing (2(n) keys. Then, by the lower
bound on static resilient searching [I4], searching for a given key in K; takes
time 2(logn + 6) = £2(6). Hence, let us assume that all the arrays contain o(n)
keys. Since there are w(1) arrays, not all the corresponding pointers can be
kept in safe memory. In particular, there must be an array K; whose pointers
are all maintained in the unsafe memory. Assume that we search for a faithful
key e contained in K;. Suppose by contradiction that ST concludes the search
in 0(6) time. This means that ST can read only o(6) pointers to reach K;, and
at most 0(8) keys of K;. Then an adversary, by corrupting o(8) memory words
only, can make ST answer no to the query. This contradicts the resiliency of ST,
which in the case considered must always find a key equal to e. a
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