
Priority Queues Resilient to Memory Faults

Allan Grønlund Jørgensen1,⋆, Gabriel Moruz1, and Thomas Mølhave1,⋆⋆

BRICS⋆ ⋆ ⋆, MADALGO†, Department of Computer Science, University of Aarhus,
Denmark. E-mail: {jallan,gabi,thomasm}@daimi.au.dk

Abstract. In the faulty-memory RAM model, the content of memory
cells can get corrupted at any time during the execution of an algorithm,
and a constant number of uncorruptible registers are available. A resilient
data structure in this model works correctly on the set of uncorrupted val-
ues. In this paper we introduce a resilient priority queue. The deletemin
operation of a resilient priority queue returns either the minimum uncor-
rupted element or some corrupted element. Our resilient priority queue
uses O(n) space to store n elements. Both insert and deletemin operations
are performed in O(log n + δ) time amortized, where δ is the maximum
amount of corruptions tolerated. Our priority queue matches the perfor-
mance of classical optimal priority queues in the RAM model when the
number of corruptions tolerated is O(log n). We prove matching worst
case lower bounds for resilient priority queues storing only structural
information in the uncorruptible registers between operations.

1 Introduction

Memory devices continually become smaller, work at higher frequencies and
lower voltages, and in general have increased circuit complexity [1]. Unfortu-
nately, these improvements come at the cost of reliability [2, 3]. A number of
factors, such as alpha particles, infrared radiation, and cosmic rays, can cause
soft memory errors where a bit flips and as a consequence the value stored in
the corresponding memory cell is corrupted. An unreliable memory can cause
problems in most software ranging from the harmless to the very serious, such
as breaking cryptographic protocols [4, 5], taking control of a Java Virtual Ma-
chine [6] or breaking smart-cards and other security processors [7–9]. Further-
more, many modern computing centers consist of relatively cheap of-the-shelf
components, and the large number of individual memories involved in these clus-
ters substantially increase the frequency of memory corruptions in the system.
Hence it is crucial that the software running on these machines is robust. Since
the amount of cosmic rays increases dramatically with altitude, soft memory

⋆ Supported in part by an Ole Roemer Scholarship
⋆⋆ Supported in part by an Ole Roemer Scholarship from the Danish National Science

Research Council and by a Scholarship from the Oticon Foundation.
⋆ ⋆ ⋆ Basic Research in Computer Science, research school.

† Center for Massive Data Algorithmics, a Center of the Danish National Research
Foundation.

errors are of special concern in fields like avionics or space research. Further-
more, soft memory error rates are expected to rise for both DRAM and SRAM
memories [2].

At the hardware level, the soft memory errors can be handled by means of
error detection mechanisms such as parity checking, redundancy or Hamming
codes. Unfortunately, implementing these mechanisms incur penalties with re-
spect to performance, size and money. Therefore, memories using these technolo-
gies are rarely found in large scale computing clusters or ordinary workstations.
On the software level, a series of low-level techniques have been proposed for
dealing with the soft memory errors, many of them coping with corrupted in-
structions. Examples include algorithm based fault tolerance [10], assertions [11],
control flow checking [12], or procedure duplication [13].

Traditionally, the work within the algorithmic community has focused on
models where the integrity of the memory system is not an issue. In these mod-
els, the corruption of even a single memory cell can have a dramatic effect on
the output. For instance, a single corrupted value can induce as much as Θ(n2)
inversions in the output of a standard implementation of mergesort [14]. Repli-
cation can help in dealing with corruptions, but is not always feasible, since the
time and space overheads are not negligible.

A multitude of algorithms that deal with unreliable information in various
ways were developed during the last decades. Aumann and Bender [15] intro-
duced fault tolerant pointer-based data structures. In their model, error detection
is done upon access, i.e. accessing a faulty pointer yields an error message. Obvi-
ously, this is not always the case in practice, since a pointer might get corrupted
to a valid value and thus an error is not reported. Furthermore, their algorithms
allow a certain amount of the data structure to be lost upon corruptions, and
this is not accepted in many practical applications. The liar model considers al-
gorithms in a comparison model where the result of a comparison is unreliable.
Work in this model include fundamental problems such as sorting and search-
ing [16–18]. A standard technique used in the design of algorithms in the liar
model is query replication, which is not of much help when memory cells, and
not comparisons, are unreliable. Kutten and Peleg [19, 20] introduced the con-
cept of fault local mending in the context of distributed networks. A problem is
fault locally mendable if there exists a correction algorithm whose running time
depends only on the (unknown) number of faults. Some other works studying
network fault tolerance include [21–27].

Finocchi and Italiano [14] introduced the faulty-memory random access ma-

chine, which is a random access machine where the content of memory cells can
get corrupted at any time and at any location. Corrupted cells cannot be distin-
guished from uncorrupted cells. The model is parametrized by an upper bound δ
on the number of corruptions occurring during the lifetime of an algorithm. It
is assumed that O(1) reliable memory cells are provided, a reasonable assump-
tion since CPU registers are considered reliable. Also, copying an element is
considered an atomic operation, i.e. the elements are not corrupted while being
copied. An algorithm is resilient if it is able to achieve a correct output at least

for the uncorrupted values. This is the best one can hope for, since the output
can get corrupted just after the algorithm finishes its execution. For instance a
resilient sorting algorithm guarantees that there are no inversions between the
uncorrupted elements in the output sequence.

Several important results has been achieved in the faulty-memory RAM. In
the original paper, Finocchi and Italiano [14] proved lower bounds and gave (non-
optimal) resilient algorithms for sorting and searching. Algorithms matching the
lower bounds for sorting and searching(expected time) were presented in [28]. An
optimal resilient sorting algorithm takes Θ(n log n + δ2) time, whereas optimal
searching is performed in Θ(log n + δ) time. Furthermore, in [29] a resilient
search tree that performs searches and updates in O(log n + δ2) time amortized
was developed. Finally, in [30] it was shown that resilient sorting algorithms are
of practical interest.

Results. In this paper we design and analyze a priority queue in the faulty-
memory RAM model. It uses O(n) space for storing n elements and performs
both Insert and Deletemin in O(log n+δ) time amortized. Our priority queue
matches the bounds for an optimal comparison based priority queue in the RAM
model while tolerating O(log n) corruptions. It is a significant improvement over
using the resilient search tree in [29] as a priority queue, since it uses O(log n+δ2)
time amortized per operation and thus only tolerates O(

√
log n) corruptions to

preserve the O(log n) bound per operation. Our priority queue is the first re-
silient data structure allowing O(log n) corruptions, while still matching optimal
bounds in the RAM model. Our priority queue does not store elements in reli-
able memory between operations, only structural information like pointers and
indices. We prove that any comparison based resilient priority queue behaving
this way requires worst case Ω(log n+ δ) time for either Insert or Deletemin.

The resilient priority queue is based on the cache-oblivious priority queue
by Arge et al. [31]. The main idea is to gather elements in large sorted groups
of increasing size, such that expensive updates do not occur too often. The
smaller groups contain the smaller elements, so they can be retrieved faster
by Deletemin operations. We extensively use the resilient merging algorithm
in [28] to move elements among the groups. Due to the large sizes of the groups,
the extra work required to deal with corruptions in the merging algorithm be-
comes insignificant compared to the actual work done.

Outline. The remainder of the paper is structured as follows. In Section 2 we
define the resilient priority queue and introduce some notation. We give a de-
tailed description of the resilient priority queue in Section 3, while in Section 4
we prove its correctness and complexity bounds. Finally, in Section 5 we prove
matching lower bounds for resilient priority queues.

2 Preliminaries

In this section we define the resilient priority queue and introduce some notation
used throughout the paper.

Given two sequences X and Y , we let XY denote the concatenation of X
and Y . A sequence X is faithfully ordered if its uncorrupted keys appear in non-
decreasing order. Finally, a reliable value is a value stored in unreliable memory
which can be retrieved reliably in spite of possible corruptions. This is achieved
by replicating the given value 2δ+1 times. Retrieving a reliable value takes O(δ)
time using the majority algorithm in [32], which scans the 2δ + 1 values keeping
a single majority candidate and a counter in reliable memory.

Definition 1. A resilient priority queue maintains a set of elements under

the operations Insert and Deletemin. An Insert adds an element and a

Deletemin deletes and returns the minimum uncorrupted element or a cor-

rupted one.

We note that our definition of a resilient priority queue is consistent with the
resilient sorting algorithms introduced in [14]. Given a sequence of n elements,
inserting all of them into a resilient priority queue followed by n Deletemin

operations yields a faithfully ordered sequence.

3 Fault tolerant priority queue

In this section we introduce the resilient priority queue. It resembles the cache-
oblivious priority queue by Arge et al. [31]. The elements are stored in faithfully
ordered lists and are moved using two fundamental primitives, Push and Pull,
based on faithful merging. We describe the structure of the priority queue in
Section 3.1 and then introduce the Push and Pull primitives in Section 3.2.
Finally, in Section 3.3, we describe the Insert and Deletemin operations.

3.1 Structure

The resilient priority queue consists of an insertion buffer I together with a
number of layers L0, . . . , Lk, with k = O(log n). Each layer Li contains an up-
buffer Ui and a down-buffer Di, represented as arrays. Intuitively, the up-buffers
contain large elements that are on their way to the upper layers in the prior-
ity queue, whereas the down-buffers contain small elements, on their way to
lower layers. The buffers in the priority queue are stored as a doubly linked
list U0, D0, . . . , Uk, Dk, see Figure 1. For each up and down buffer we reliably
store the pointers to their adjacent buffers in the linked list and their size. In
the reliable memory we store pointers to I, U0 and D0, together with |I|. Since
the position of the first element in U0 and D0 is not always the first memory cell
of the corresponding buffer, we also store the index of the first element in these
buffers in reliable memory. The insertion buffer I contains up to b = δ+logn+1
elements. For layer Li we define the threshold si by s0 = 2 · (δ2 + log2 n)
and si = 2si−1 = 2i+1 · (δ2 + log2 n), where n is the number of elements in
the priority queue. We use these thresholds to decide whether an up buffer con-
tains too many elements or whether a down buffer has too few. For the sake of

����
����
����

����
����
�����������
�������
�������

�������
�������
�������

��
��
��

��
��
�����
���
���

���
���
���

���
���
���

���
���
���

Di+1

Ui+1

︸ ︷︷ ︸

si

︸ ︷︷ ︸

si+1
Li+1

Ui

Di

Li

I

︸ ︷︷ ︸

b

.

Fig. 1. The structure of the priority queue. The buffers are stored in a doubly linked
list using reliably stored pointers. Additionally, the size of each buffer is stored reliably.

simplicity, the up and down buffers are grown and shrunk as needed during the
execution such that they don’t use any extra space.

To structure the priority queue, we maintain the following invariants for the
up and down buffers.

– Order invariants:

1. All buffers are faithfully ordered.
2. DiDi+1 and DiUi+1 are faithfully ordered, for 0 ≤ i < k.

– Size invariants:

3. si/2 ≤ |Di| ≤ si, for 0 ≤ i < k.
4. |Ui| ≤ si/2, for 0 ≤ i < k.

By maintaining all the up and down buffers faithfully ordered, it is possible to
move elements between neighboring layers efficiently, using faithful merging. By
invariant 2, all uncorrupted elements in Di are smaller than all uncorrupted
elements in both Di+1 and Ui+1. This ensures that small elements belong to the
lower layers of the priority queue. We note that there is no assumed relationship
between the elements in the up and down buffers in the same layer. Finally, the
size invariants allow the sizes of the buffers to vary within a large range. This
way, Ω(si) Insert or Deletemin operations occur between two operations on
the same buffer in Li, yielding the desired amortized bounds.

Since the si values depend on n, whenever the size of the priority queue
increases or decreases by Θ(n), we perform a global rebuilding. This rebuilding
is done by collecting all elements, sorting them with an optimal resilient sorting
algorithm [28], and redistributing the output into the down buffers of all the
layers starting with L0. After the global rebuilding, the up buffers are empty
and the down buffers full, except possibly the last down buffer.

3.2 Push and pull primitives

We now introduce the two fundamental primitives used by the priority queue.
The Push primitive is invoked when an up buffer contains too many elements,
breaking invariant 4. It “pushes” elements upwards, repairing the size invariants
locally. The Pull operation is invoked when a down buffer contains too few
elements, breaking invariant 3. It fills this down buffer by “pulling” elements

from the layer above, again locally repairing the size invariants. Both operations
faithfully merge consecutive buffers in the priority queue and redistribute the
resulting sequence among the participating buffers. After merging, we deallocate
the old buffers and allocate new arrays for the new buffers.

Push. The Push primitive is invoked when an up buffer Ui breaks invariant 4,
i.e. when it contains more than si/2 elements. In this case we merge Ui, Di

and Ui+1 into a sequence M using the resilient merging algorithm in [28]. We
then distribute the elements in M by placing the first |Di|− δ elements in a new
buffer D′

i, and the remaining |Ui+1|+|Ui|+δ elements in a new buffer U ′

i+1. After
the merge, we create an empty buffer, U ′

i , and deallocate the old buffers. If U ′

i+1

contains too many elements, breaking invariant 4, the Push primitive is invoked
on U ′

i+1. When Li is the last layer, we fill D′

i with the first elements of M and
create a new layer Li+1 placing the remaining elements of M into D′

i+1 instead
of U ′

i+1. Since |D′

i| is smaller than |Di|, it could violate invariant 3. This situation
is handled by using the Pull operation and is described after introducing Pull.

Unlike the priority queue in [31], the Push operation decreases the size of
a down buffer. This is required to preserve invariant 2, in spite of corruptions.
After a Push call, D′

i can contain elements from Ui ∪ Ui+1. Since there is no
assumed relationship between elements in Ui ∪ Ui+1 and those in Di+1 ∪ Ui+2,
we need to ensure that each element in D′

i originating from Ui∪Ui+1 is faithfully
smaller than the elements in Di+1 ∪ Ui+2. Assume the size of Di is preserved,
i.e. |D′

i| = |Di|. Consider a corruption that alters an element in Di to some
large value before the Push. This corrupted value could be placed in U ′

i+1 and,
since |D′

i| = |Di|, an element from Ui ∪ Ui+1 must be placed in D′

i. This new
element in D′

i potentially violates invariant 2.

Pull. The Pull operation is called on a down buffer Di when it contains less
than si/2 elements, breaking invariant 3. In this case, the buffers Di, Ui+1,
and Di+1 are merged into a sequence M using the resilient merging algorithm
in [28]. The first si elements from M are written to a new buffer D′

i, and the
next |Di+1|−(si−|Di|)−δ elements are written to D′

i+1. The remaining elements
of M are written to U ′

i+1. A Pull is invoked on D′

i+1, if it is too small.

Similar to the Push operation, the extra δ elements lost by Di+1 ensure that
the order invariants hold in spite of possible corruptions. That is, a corruption
of an element in Di∪Di+1 to a very large value may cause an element from Ui+1

to take the place of the corrupted element in D′

i+1 and this element is possibly
larger than some uncorrupted element in Di+2 ∪ Ui+2.

After the merge, U ′

i+1 contains δ more elements than Ui+1 had before the
merge, and thus it is possible that it has too many elements, breaking invariant 4.
We handle this situation as follows. Consider a maximal series of subsequent
Pull invocations on down buffers Di, Di+1, . . . , Dj , 0 ≤ i < j < k. After the
first Pull call on Di and before the call on Di+1 we store a pointer to Di in the
reliable memory. After all the Pull calls we investigate all the affected up buffers,
by simply following the pointers between the buffers starting from Di, and invoke

the Push primitive wherever necessary. The case when Push operations cause
down buffers to underflow is handled similarly.

3.3 Insert and deletemin

An element is inserted in the priority queue by simply appending it to the
insertion buffer I. If I gets full, its elements are added to U0 by first faithfully
sorting I and then faithfully merging I and U0. If U0 breaks invariant 4, we invoke
the Push primitive. If L0 is the only layer of the priority queue and D0 violates
the size constraint, we faithfully merge the elements in I with D0 instead.

To delete the minimum element in the priority queue, we first find the mini-
mum of the first δ+1 values in D0, the minimum of the first δ+1 values in U0, and
the minimum element in I. We then take the minimum of these three elements,
delete it from the appropriate buffer and return it. After deleting the minimum,
we right-shift all the elements in the affected buffer from the beginning up to
the position of the minimum. This way we ensure that elements in any buffer
are stored consecutively. If D0 underflows, we invoke the Pull primitive on D0,
unless L0 is the only layer in the priority queue. If U0 or D0 contains Θ(log n+δ)
empty cells, we create a new buffer and copy the elements from the old buffer
to the new one.

4 Analysis

In this section we analyze the resilient priority queue. We prove the correctness
in Section 4.1 and analyze the time and space complexity in Section 4.2.

4.1 Correctness

To prove correctness of the resilient priority queue, we show that the Deletemin

operation returns the minimum uncorrupted value or a corrupted value. We first
prove that the order invariants are maintained by the Pull and Push operations.

Lemma 1. The Pull and Push primitives preserve the order invariants.

Proof. Recall that in a Pull invocation on buffer Di, the buffers Di, Ui+1,
and Di+1 are faithfully merged into a sequence M . The elements in M are then
distributed into three new buffers D′

i, U ′

i+1, and D′

i+1, see Figure 2. To argue
that the order invariants are satisfied we need to show that the elements of
the down buffer on layer Lj , for 0 ≤ j < k, are faithfully smaller than the
elements of the buffers on layer Lj+1, where k is the index of the last layer. The
invariants hold trivially for unaffected buffers. The faithful merge guarantees
that D′

iD
′

i+1 as well as D′

iU
′

i+1 are faithfully ordered, and thus the individual
buffers are also faithfully ordered. Since invariant 2 holds for the original buffers
all uncorrupted elements in Di+1 and Ui+1 are larger than the uncorrupted
elements in Di, guaranteeing that Di−1D

′

i is faithfully ordered. Finally, we now
show that Di+1Di+2 and Di+1Ui+2 are faithfully ordered.

D′

i
D′

i+1 U ′

i+1

︷︸︸︷

|Ui+1|
︸ ︷︷ ︸

δ

M

︸ ︷︷ ︸

|Di| + |Di+1|

Fig. 2. The distribution of M into buffers.

Let m be the minimum uncorrupted element in Di+2∪Ui+2. We need to show
that all uncorrupted elements in D′

i+1 are smaller than m. If no uncorrupted
element from Ui+1 is placed in D′

i+1, the invariant holds by the order invariants
before the operation. Otherwise, assume that an uncorrupted element y ∈ Ui+1

is moved to D′

i+1. Since |U ′

i+1| = |Ui+1|+δ and y is moved to D′

i+1, at least δ+1
elements originating from Di ∪ Di+1 are contained in U ′

i+1. Since there can be
at most δ corruptions, there exists at least one uncorrupted element, x, among
these. By faithful merging, all uncorrupted elements in D′

i+1 are smaller than x,
which means that y ≤ x. Since x originates from Di∪Di+1, it is smaller than m.
We obtain y ≤ m.

A similar argument proves correctness of the Push operation. We conclude
that both order invariants are preserved by Pull and Push operations. ⊓⊔

Having proved that the order invariants are maintained at all times, we now
prove the correctness of the resilient priority queue.

Lemma 2. The Deletemin operation returns the minimum uncorrupted value

in the priority queue or a corrupted value.

Proof. We recall that the Deletemin operation computes the minimum of the
first δ+1 elements of U0 and D0. It compares these values with the minimum of I,
found in a scan, and returns the smallest of these elements. Since U0 and D0

are faithfully ordered, the minimum of their first δ + 1 elements is either the
minimum uncorrupted value in these buffers, or a corrupted value even smaller.
Furthermore, according to the order invariants, all the values in layers L1, . . . , Lk

are faithfully larger than the minimum in D0. Therefore, the element reported
by Deletemin is the minimum uncorrupted value or a corrupted value. ⊓⊔

4.2 Complexity

In this section we show that our resilient priority queue uses O(n) space and
that Insert and Deletemin take O(log n + δ) amortized time. We first prove
that the Pull and Push primitives restore the size invariants.

Lemma 3. If a size invariant is broken for a buffer in L0, invoking Pull or

Push on that buffer restores the invariants. Furthermore, during this operation

Pull and Push are invoked on the same buffer at most once. No other invariants

are broken before or after this operation.

Proof. Assume that Push is invoked on U0, and that it is called iteratively up
to some layer Ll. By construction of Push, the size invariants for all the up
buffers now hold. Since a Push steals δ elements from the down buffers, the
layers L0, . . . , Ll are traversed again and Pull is invoked on these as needed.
The last of these Pull operations might proceed past layer Ll. Similarly, a
Pull may cause an up buffer to overflow. However, since the cascading Push

operations left |Ui| = 0 for i ≤ l, any new Push are invoked on up buffers only
on layer Ll+1 or higher, thus Push is invoked on each buffer at most once. A
similar argument works for the Pull operation. ⊓⊔

Lemma 4. The resilient priority queue uses O(n+δ) space to store n elements.

Proof. The insertion buffer always uses O(log n + δ) space. We prove that the
remaining layers use O(n) space. For each layer we use O(δ) space for storing
structural information reliably. In all layers, except the last one, the down buffer
contains Ω(δ2) elements by invariant 3. This means that for each of these layers
the elements stored in the down buffer dominate the space complexity. The
structural information of the last layer requires additional O(δ) space. ⊓⊔

The space complexity of the priority queue can be reduced to O(n) without
affecting the time complexity, by storing the structural information of L0 in safe
memory, and by doubling or halving the insertion buffer during the lifetime of
the algorithm such that it always uses O(|I|) space.

Lemma 5. Each Insert and Deletemin takes O(log n + δ) amortized time.

Proof. We define the potential function:

Φ =

k∑

i=1

(c1 · (log n − i) · |Ui| + c2 · i · |Di|)

We use Φ to analyze the amortized cost of a Push operation. In a Push oper-
ation on Ui, buffers Ui, Di, and Ui+1 are merged. The elements are then dis-
tributed into new buffers U ′

i , D
′

i, and U ′

i+1, such that |U ′

i | = 0, |D′

i| = |Di| − δ,
and |U ′

i+1| = |Ui+1|+ |Ui|+ δ. This gives the following change in potential ∆Φ:

∆Φ = −|Ui| · c1 · (log n − i) − δ · c2 · i + (|Ui| + δ) · c1(log n − (i + 1))

= −c1 · |Ui| + δ(−c2 · i + c1 · log n − c1 · i − c1) .

Since the Push is invoked on Ui, invariant 4 is not valid for Ui and there-
fore |Ui| ≥ si

2
= 2i (log2 n + δ2). Thus:

∆Φ ≤ −c1·|Ui|+c1·δ·log n ≤ −c1 ·2i·(log2 n+δ2)+c1·δ·log n ≤ −c1 ·c′·|Ui| , (1)

for some constant c′ > 0.
Since faithfully merging two sequences of size n takes O(n+δ2) time [28], the

time used for a Push on Ui is upper bounded by cm · (|Ui|+ |Di|+ |Ui+1|+ δ2),
where cm depends on the resilient merge. This includes the time required for

retrieving reliably stored variables. Adding the time and the change in potential
we are able to get the amortized cost less than zero by tweaking c1 based on
equation (1). This is because |Ui| is Ω(δ2) and at most a constant fraction smaller
than the participants in the merge.

A similar analysis works for the Pull primitive. We now calculate the amor-
tized cost of Insert and Deletemin. We ignore any Push or Pull operations
since their amortized costs are negative. The amortized time for inserting an
element in I, sorting I, and merging it with U0 is O(log n + δ) per operation.
The change in potential when adding elements to L0 is O(log n) per element.
The time needed to find the smallest element in a Deletemin is O(log n + δ),
and the change in potential when an element is deleted from L0 is negative.

The cost of global rebuilding is dominated by the cost of sorting, which
is O(n log n + δ2). There are Θ(n) operations between each rebuild, which leads
to O(log n+δ) time per operation, since δ ≤ n, and this concludes the proof. ⊓⊔

Theorem 1. The resilient priority queue takes O(n) space and uses amor-

tized O(log n + δ) time per operation.

5 Lower bound

In this section we prove that any resilient priority queue takes Ω(log n+ δ) time
for either Insert or Deletemin in the comparison model, under the assumption
that no elements are stored in reliable memory between operations. This implies
optimality of our resilient priority queue under these assumptions. We note that
the reliable memory may contain any structural information, e.g. pointers, sizes,
indices.

Theorem 2. A resilient priority queue containing n elements, with n > δ,
uses Ω(log n + δ) comparisons to perform Insert followed by Deletemin.

Proof. Consider a priority queue Q with n elements, with n > δ, that uses less
than δ comparisons for an Insert followed by a Deletemin. Also, Q does not
store elements in reliable memory between operations. Assume that no corrup-
tions have occurred so far. Without loss of generality we assume that all the ele-
ments in Q are distinct. We prove there exists a series of corruptions C, |C| ≤ δ,
such that the result of an Insert of an element e followed by a Deletemin

returns the same element regardless of the choice of e.
Let k < δ be the number of comparisons performed by Q during the two

operations. We force the result of each comparison to be the same regardless
of e by suitable corruptions. In all the comparisons involving e, we ensure that e
is the smallest. We do so by corrupting the value which e is compared against
if necessary, by adding some positive constant c ≥ e to the other value. If two
elements different than e are compared, we make sure the outcome is the same
as if no corruptions had happened. If one of them was corrupted, adding c to the
other one reestablishes their previous ordering. If both of them were corrupted
by adding c, their ordering is unchanged and no corruptions are needed. Forcing

any comparison to give the desired outcome requires at most one corruption,
and therefore |C| ≤ k < δ.

We now consider the value e′ returned by Deletemin on Q. If e = e′ then
we choose e to be larger than some element x ∈ Q not affected by a corruption
in C. Such a value exists because the size of the priority queue is larger than δ.
Since e = e′ > x, Q returned an uncorrupted element that was not the minimum
uncorrupted element in Q. If e 6= e′ we choose e to be smaller than any element
in Q. With such a choice of e, no corruptions are required and the value returned
by Q was not corrupted, but still larger than e. This proves Q is not resilient.

Adding the classical Ω(log n) bound for priority queues in the comparison
model the result follows. ⊓⊔

Acknowledgments

We would like to thank Gerth S. Brodal and Lars Arge for their very helpful com-
ments. We would also like to thank the anonymous reviewers for their valuable
comments, especially suggestions for simplifying the proof of Lemma 1.

References

1. Constantinescu, C.: Trends and challenges in VLSI circuit reliability. IEEE micro
23(4) (2003) 14–19

2. Tezzaron Semiconductor: Soft errors in electronic memory - a white paper.
http://www.tezzaron.com/about/papers/papers.html (2004)

3. van de Goor, A.J.: Testing Semiconductor Memories: Theory and Practice. Com-
Tex Publishing, Gouda, The Netherlands (1998) ISBN 90-804276-1-6.

4. Boneh, D., DeMillo, R.A., Lipton, R.J.: On the importance of checking crypto-
graphic protocols for faults. In: Eurocrypt. (1997) 37–51

5. Xu, J., Chen, S., Kalbarczyk, Z., Iyer, R.K.: An experimental study of security
vulnerabilities caused by errors. In: Proc. International Conference on Dependable
Systems and Networks. (2001) 421–430

6. Govindavajhala, S., Appel, A.W.: Using memory errors to attack a virtual machine.
In: IEEE Symposium on Security and Privacy. (2003) 154–165

7. Anderson, R., Kuhn, M.: Tamper resistance - a cautionary note. In: Proc. 2nd
Usenix Workshop on Electronic Commerce. (1996) 1–11

8. Anderson, R., Kuhn, M.: Low cost attacks on tamper resistant devices. In: Inter-
national Workshop on Security Protocols. (1997) 125–136

9. Skorobogatov, S.P., Anderson, R.J.: Optical fault induction attacks. In: Proc.
4th International Workshop on Cryptographic Hardware and Embedded Systems.
(2002) 2–12

10. Huang, K.H., Abraham, J.A.: Algorithm-based fault tolerance for matrix opera-
tions. IEEE Transactions on Computers 33 (1984) 518–528

11. Rela, M.Z., Madeira, H., Silva, J.G.: Experimental evaluation of the fail-silent
behaviour in programs with consistency checks. In: Proc. 26th Annual International
Symposium on Fault-Tolerant Computing. (1996) 394–403

12. Yau, S.S., Chen, F.C.: An approach to concurrent control flow checking. IEEE
Transactions on Software Engineering SE-6(2) (1980) 126–137

13. Pradhan, D.K.: Fault-tolerant computer system design. Prentice-Hall, Inc. (1996)
14. Finocchi, I., Italiano, G.F.: Sorting and searching in the presence of memory faults

(without redundancy). In: Proc. 36th Annual ACM Symposium on Theory of
Computing. (2004) 101–110

15. Aumann, Y., Bender, M.A.: Fault tolerant data structures. In: Proc. 37th Annual
Symposium on Foundations of Computer Science, Washington, DC, USA, IEEE
Computer Society (1996) 580

16. Borgstrom, R.S., Kosaraju, S.R.: Comparison-based search in the presence of
errors. In: Proc. 25th Annual ACM symposium on Theory of Computing. (1993)
130–136

17. Lakshmanan, K.B., Ravikumar, B., Ganesan, K.: Coping with erroneous informa-
tion while sorting. IEEE Transactions on Computers 40(9) (1991) 1081–1084

18. Ravikumar, B.: A fault-tolerant merge sorting algorithm. In: Proc. 8th Annual
International Conference on Computing and Combinatorics. (2002) 440–447

19. Kutten, S., Peleg, D.: Fault-local distributed mending. Journal of Algorithms
30(1) (1999) 144–165

20. Kutten, S., Peleg, D.: Tight fault locality. SIAM Journal on Computing 30(1)
(2000) 247–268

21. Diks, K., Pelc, A.: Optimal adaptive broadcasting with a bounded fraction of
faulty nodes (extended abstract). In: Proc. 5th Annual European Symposium on
Algorithms. (1997) 118–129

22. Gasieniec, L., Pelc, A.: Broadcasting with a bounded fraction of faulty nodes.
Journal of Parallel and Distributed Computing 42(1) (1997) 11–20

23. Hastad, J., Leighton, T.: Fast computation using faulty hypercubes. In: Proc. 21st
Annual ACM Symposium on Theory of Computing. (1989) 251–263

24. Hastad, J., Leighton, T., Newman, M.: Reconfiguring a hypercube in the presence
of faults. In: Proc. 19th Annual ACM Symposium on Theory of Computing. (1987)
274–284

25. Kaklamanis, C., Karlin, A.R., Leighton, F.T., Milenkovic, V., Raghavan, P., Rao,
S., Thomborson, C.D., Tsantilas, A.: Asymptotically tight bounds for comput-
ing with faulty arrays of processors (extended abstract). In: Proc. 31st Annual
Symposium on Foundations of Computer Science. (1990) 285–296

26. Leighton, F.T., Maggs, B.M.: Expanders might be practical: Fast algorithms for
routing around faults on multibutterflies. In: Proc. 30th Annual Symposium on
Foundations of Computer Science. (1989) 384–389

27. Park, S., Bose, B.: All-to-all broadcasting in faulty hypercubes. IEEE Transactions
on Computers 46(7) (1997) 749–755

28. Finocchi, I., Grandoni, F., Italiano, G.F.: Optimal resilient sorting and searching
in the presence of memory faults. In: Proc. 33rd Int. Colloquium on Automata,
Languages and Programming. (2006) 286–298

29. Finocchi, I., Grandoni, F., Italiano, G.F.: Resilient search trees. In: Proc. 18th
ACM-SIAM Symposium on Discrete Algorithms. (2007) To appear.

30. Petrillo, U.F., Finocchi, I., Italiano, G.F.: The price of resiliency: a case study
on sorting with memory faults. In: Proc. 14th Annual European Symposium on
Algorithms. (2006) 768–779

31. Arge, L., Bender, M.A., Demaine, E.D., Holland-Minkley, B., Munro, J.I.: Cache-
oblivious priority queue and graph algorithm applications. In: Proc. 34th Annual
ACM Symposium on Theory of Computing. (2002) 268–276

32. Boyer, R.S., Moore, J.S.: MJRTY: A fast majority vote algorithm. In: Automated
Reasoning: Essays in Honor of Woody Bledsoe. (1991) 105–118

