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1 Introduction

The adaptation of I/O-efficient algorithms in commercial and research applications can be facil-
itated by well-designed software libraries. The Templated Portable I/O Environment (TPIE) [2]
for C++ is one such library based on the I/O-model of Agarwal and Vitter [3]. TPIE contains a
number of powerful algorithms and data structures, enabling the user to quickly develop software
that scales to very large data sets. Figure 1 illustrates the power of I/O-efficient algorithms in gen-
eral and TPIE in particular, in this case using an external memory sorting algorithm and priority
queue. As the data size grows close to the 6GiB of main memory of the computer, the sorting
algorithm from the C++ Standard Template Library (STL), std::sort, slows down dramatically.
Beyond that point using std::sort is infeasible as running times extend into days and weeks even
for date sizes only slightly larger than the main memory. STL’s std::priority queue behaves in
the same way. The sorting algorithm and the priority queue from TPIE are well behaved, even
as the size of the input data grows to terabytes. The STXXL [8] and LEDA-SM [5] libraries have
goals and features similar to those of TPIE. STXXL aims to be very close to C++’s Standard Tem-
plate Library (STL) but also offers pipe-lining and some usage of multiple cores. LEDA-SM is an
extension to the Library of Efficient Data Types and Algorithms (LEDA) and consists of a number
of I/O-efficient data structures and algorithms. Unfortunately, the LEDA-SM project is not active
according to a statement on the project’s website. On a slightly different level the cluster-friendly
FG [4] library provides a framework for pipe-line structured programs that also scale to large data
sets. A significantly reworked version 2.0 has been announced on the project website. Moving
further into the distributed computing paradigm, the MapReduce [7] and Hadoop [1] frameworks
are very popular for implementing algorithms on clusters with large numbers of computing nodes,
but that is outside the scope of this article. We refer to [10] and the references therein for a more
extensive survey of I/O-efficient algorithms and software libraries.

In this article we focus on the TPIE library, but many of the ideas carry over to other libraries
such as STXXL. TPIE has a long history; it was started in 1994 at Duke University in North
Carolina when it was known as the Transparent Parallel I/O Environment [9]. TPIE is currently
hosted by the Center for Massive Data Algorithmics (MADALGO) at Aarhus University. From
the beginning the goals of TPIE have been to hide the details of how I/Os are performed, and
to provide the user with a set of standard tools and paradigms that can be used to effectively
implement algorithms for large data sets.
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Figure 1: Performance of 32-bit integer sorting using std::sort and std::priority queue from the
Standard Template Library and TPIE’s tpie::sort and tpie::priority queue. The machine used
had a 64 bit Intel Core i7 CPU and 6GiB of main memory. When the input data reached 4GiB the
std::priority queue version started hitting the disk due to the OS paging algorithm and it had
not terminated after running for 6 hours. The same thing happened for std::sort when the data
size neared 6GiB.

TPIE is used in many implementations of I/O-efficient algorithms and plays an important
part in several large software projects such as TerraS̃TREAM [6]. TPIE is also currently used in
commercial software packages on both Windows- and Linux-based systems.

2 Brief TPIE Overview

In this section we give a short overview of the fundamentals of TPIE and more information can be
found in the online documentation [2].

Streams The fundamental primitive in TPIE is the tpie::file stream class which models a
sequence of data stored on disk that can be scanned sequentially. Algorithms developed with TPIE
frequently store and manipulate streams as their basic unit of storage. An active tpie::file stream

uses Θ(B) bytes of memory and the rest of the contents of the stream is stored on disk. As a working
example, assume we are writing a program that receives data in the form of a point cloud from
R3 represented by C++ class point. A tpie::file stream can be populated with these points for
further processing using the following code:

t p i e : : f i l e s t r e am<point> s ;
s . open ( ) ;
while ( has more po int s ( ) ) {

const point& p = ge t n ex t po i n t ( ) ;
s . wr i t e (p ) ;

}

The stream s now contains all the input points (assuming has more points and get next point have
been correctly implemented). If we want to scan those points in lexicographical order we need to
sort them. This is done easily using the TPIE sort function.



t p i e : : s o r t ( s ) ; // s o r t s accord ing to po in t : : operator<

This assumes that operator< has been overloaded for the point class, but if that is not the case, or
another order is desired, a custom comparator can be passed to the sorting function. The sorting
function is based on the standard I/O-efficient merge sort [3] and uses O(M) bytes of memory,
and it can use multiple CPU cores for the internal sorting steps. As mentioned before, Figure 1
shows the performance of tpie::sort versus std::sort. As expected tpie::sort is superior when
the data size grows large, but we also notice that it, in this case, is faster on smaller data sets as
well. This comes from the fact that tpie::sort uses all the available CPU cores whereas std::sort

runs only on a single core by default.

Data Structures TPIE contains implementations of I/O-efficient stacks, queues and priority
queues. Their interfaces match the corresponding structures from the STL. For instance, an I/O-
efficient priority queue, stack and queue can be defined in the following way:

t p i e : : stack<point> s t ck ;
t p i e : : queue<point>q ;
t p i e : : p r i o r i t y queue<point> pq ;

TPIE’s priority queue behaves very well when the data size grows large, as can be seen in Figure 1.
Here we compare tpie::priority queue against std::priority queue for the (somewhat contrived)
problem of using a priority queue for sorting. Note that the priority queue is an example of a data
structure that requires Ω(M) memory for efficient worst-case performance. This requirement is
fulfilled using the TPIE memory accounting system system, described next.

Memory Accounting Since TPIE models the two-level I/O model it needs to know the memory
size M and the block size B. When TPIE is initialized, the user can supply the value of M to
the system — the value of B is set by default. TPIE contains its own memory system that
ensures no more than M bytes of memory can be used. This implies, among other things, that the
sorting algorithm will query the memory system to get the current amount of available memory
and restrict itself accordingly. Similarly, the priority queue can be given a value k ≤ M and will
never use more than k bytes of memory regardless of how many elements it contains at any given
time. For instance, if the user needs to use two priority queues simultaneously each of them should
be initialized by a value k < M/2. The first versions of TPIE globally overloaded operator new

in order to keep track of the system-wide memory usage of the application, but this is impractical
for large software projects where the overhead of keeping track of various strings and other trivial
bookkeeping is high. Furthermore this approach is near impossible when third party dynamically
loaded external libraries with their own memory systems are used. In order for the memory system
to work in heterogeneous applications TPIE needs to be told explicitly about the memory use of
data structures that are not part of TPIE. This includes STL data structures (e.g.. std::vector

and std::set) as well as arrays and other heap-allocated objects. Memory accounting for STL data
structures can be achieved by using the tpie allocator type. For example, a vector of type T can
be declared in the following way:

std : : vector<T, tp i e : : a l l o c a t o r<T> > vec ;

This works for all data structures that use the std::allocator paradigm. For standard heap-
allocated objects, TPIE supplies tpie new, which can be used as a drop-in replacement of the
standard new operator. Finally, instead of trying to duplicate delete[] for arrays, TPIE encourages
the use of tpie::array instead. These arrays behave much like standard arrays, but allocate
memory using the TPIE memory system. Memory allocated using the standard C++ allocators will
work as usual, but will not count towards the limit of M maintained by TPIE.



Scratch Space The data stored in a TPIE stream (or other TPIE data structures) is stored in a
temporary file on disk. By default TPIE uses the standard system path (e.g. /var/tmp on Ubuntu),
but this can be configured by the user. It is a good idea to direct TPIE to use a fast disk since the
speed of this disk (or disks in case of RAID arrays) will be the bottleneck for most TPIE programs.

3 Conclusion & Future Plans

TPIE is still under active development and has a thriving, growing community of users and de-
velopers. The TPIE website [2] contains more information including full API documentation, and
in-depth download and getting-started instructions.

A number of ideas are currently on the drawing board. One of the most important of these
is pipe-lining support, which is also supported by STXXL. The idea is to be able to separate the
algorithms into modules that are implemented independently, which will allow TPIE to better
schedule I/Os. For instance, if several subsequent scans of the same file stream are performed,
these can be coalesced into one scan and combined with the pre-computing phase of any subsequent
sorting operation. Pipe-lining does not change the asymptotic performance of the algorithm, but
can significantly reduce the constants involved. Another significant feature is support for additional
data structures, such as B-trees and similar tree-based data-structures.
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